Synthèse, structure cristalline, et propriétés physiques du nouveau binaire métastable supraconducteur a clusters Mo₉: O–Mo₉Se₁₁

P. GOUGEON, M. POTEL, J. PADIOU, ET M. SERGENT

Université de Rennes I, Unité Associée au CNRS nº 254, Laboratoire de Chimie Minérale B, Avenue du Général Leclerc, 35042 Rennes Cédex, France

ET C. BOULANGER ET J. M. LECUIRE

Université de Nancy I, Laboratoire de Chimie du Solide Minéral Associé au CNRS n° 158, B.P. 239, 54506 Vandoeuvre-les-Nancy Cédex, France

Received March 11, 1987

We present the synthesis, crystal structure, and physical properties of the new binary phase $O-Mo_9Se_{11}$. This compound was synthesized at low temperature by silver deinsertion from the ternary orthorhombic compound $Ag_{3,6}Mo_9Se_{11}$. Its crystal structure revealed that both compounds are isostructural (space group *Cmcm*; a = 11.953 Å, b = 13.069 Å, c = 11.039 Å for $O-Mo_9Se_{11}$ and a = 11.910 Å, b = 13.614 Å, c = 11.679 Å for $Ag_{3,6}Mo_9Se_{11}$). Resistivity and magnetic measurements indicate that the new binary phase becomes a superconductor at 5.5 K while the parent ternary compound shows semiconductor behavior at low temperature. @ 1987 Academic Press, Inc.

Introduction

Les chalcogénures ternaires de molybdène sont structuralement caractérisés par l'existence d'entités pseudo-moléculaires (Mo_6X_8 , Mo_9X_{11} , $Mo_{12}X_{14}$, ...) dont la cohésion est assurée par des liaisons fortes Mo-Mo et Mo-X constituant un réseau hôte dans lequel est inséré, à l'intérieur de canaux entrecroisés, l'élément ternaire sous forme de cation M^{n+} (1-3).

Récemment, nous avons montré qu'il est possible de désinsérer ces cations par des méthodes chimiques douces sans altérer le réseau-hôte. Nous avons ainsi obtenu un certain nombre de binaires sulfurés ou séléniés métastables: Mo_6X_8 , Mo_9X_{11} (X = S, Se), α - et β -Mo₁₅Se₁₉, isostructuraux des composés ternaires de départ (4).

Nous présentons ici la synthèse, la structure cristalline et les propriétés physiques d'un nouveau binaire métastable, appelé $O-Mo_9Se_{11}$, obtenu par désinsertion de l'argent du composé ternaire $Ag_{3,6}Mo_9Se_{11}$ de symétrie orthorhombique (5, 6).

Synthese

Le composé ternaire de départ, Ag_{3,6}Mo₉Se₁₁, est préparé par synthèse à partir des éléments, à 1100°C, suivant la méthode décrite précédemment (6). Le principe de la désinsertion de l'argent repose sur la réaction d'oxydation:

 $Ag_{3,6}Mo_9Se_{11} \rightarrow Mo_9Se_{11} + 3,6Ag^+ + 3,6e^-.$

Une étude par voie électrochimique en confirme la possibilité (7). Par voie chimique, la réaction a d'abord été effectuée par l'action de l'iode en milieu éthanol à température ambiante (8). La réaction est lente et nécessite, pour être totale, quelques jours pour la poudre, et quelques semaines pour les monocristaux. Les temps de réaction peuvent être considérablement réduits par action de l'iode en milieu diméthylsulfone, à 150°C, ou par action directe de l'iode en tube scellé, également à 150°C. La réaction est alors totale en quelques heures pour les échantillons pulvérulents, et en 48 hr pour les monocristaux. La synthèse est donc réalisée suivant l'équation

$$Ag_{3,6}Mo_9Se_{11} + 1,8I_2 \rightarrow O_Mo_Se_{11} + 3.6AgI$$

FIG. 1. Diffractogramme X (Cu $K\overline{\alpha}$) de O-Mo₉Se₁₁ (a) et de Ag_{3.6}Mo₉Se₁₁ (b).

La deuxième étape du procédé consiste à éliminer AgI par complexation on AgI_2^- , soluble en milieu aqueux. Ceci est réalisé par lavages successifs avec une solution concentrée de KI (2 *M*), suivis de rinçages à l'eau, jusqu'à obtention de la phase O- Mo_9Se_{11} pure. Un contrôle analytique à la microsonde de Castaing, ainsi qu'une analyse chimique de traces, menée par redissolution anodique démontrent que la réaction de désinsertion de l'argent est totale.

Chauffé en tube de silice scellé sous vide, le nouveau binaire O-Mo₉Se₁₁ reste stable jusqu'à 700°C, température à partir de laquelle il commence à se décomposer en MoSe₂ et Mo. Cette stabilité thermique est ainsi très proche de celle des autres binaires séléniés métastables α - et β -Mo₁₅Se₁₉ que nous avons précédemment isolés (4).

Le diffractogramme X de $O-Mo_9Se_{11}$, enregistré sur un goniomètre CGR Théta 2000 équipé d'un compteur proportionnel, à la longueur d'onde λ Cu $K\overline{\alpha}$, montre des raies de diffraction bien résolues indiquant une bonne conservation de la cristallinité du composé durant la réaction de désinsertion (Fig. 1). Il s'indexe dans une maille orthorhombique de paramètres a = 11,953(4) Å, b = 13,069(3) Å, c = 11,039(1) Å, V = 1725Å³, isotype du composé de départ Ag_{3,6}Mo₉Se₁₁ (a = 11,910(3) Å, b =13,614(4) Å, c = 11,679(3) Å, V = 1894 Å³).

Étude structurale

Plusieurs groupes de monocristaux de la phase ternaire, préparés par transport chimique en phase gazeuse suivant la méthode décrite antérieurement (6), ont été traités par les différentes méthodes exposées plus haut. Par observation au MEB (Figs. 2 et 3), ils apparaissent alors légèrement fissurés. L'étude sur diffractomètre automatique ENRAF-NONIUS CAD-4 confirme

FIG. 2. Monocristal de $O-Mo_9Se_{11}$ après la réaction de désinsertion par l'iode. Le cristal est orienté suivant la face (010).

FIG. 3. Détail de la surface.

une altération de leur cristallinité par un élargissement des pics de diffraction. Toutefois, ils restent d'une qualité suffisante pour justifier une détermination structurale complète.

Les paramètres de maille, affinés par une méthode de moindres carrés à partir de 25 angles de diffraction, optimisés sur diffractomètre, font apparaître quelques différences entre les trois monocristaux étudiés. Après détermination structurale complète, il s'avère que, pour deux cristaux, la désinsertion n'est pas totale, et l'affinement de la stoechiométrie en Ag converge respectivement vers 0,44 et 0,9 Ag par groupement formulaire Mo₉Se₁₁. Les variations des paramètres a, b, c, et du volume de maille V, portés sur la Fig. 4, montrent une diminution continue pour b, c, et V et une très faible augmentation pour le paramètre a lorsque la stoechiométrie en Ag diminue.

Par la suite, nous n'exposerons que les résultats relatifs au monocristal pour lequel

FIG. 4. Variation des paramètres de la maille cristalline en fonction de la stoechiométrie en argent (z).

CARACTÉRISTIQUES CRISTALLOGRAPHIQUES ET CONDITIONS D'ENREGISTREMENT ET D'AFFINEMENT DE O-M0₉Se₁₁

Groupe spatial	Cmcm (N° 39)
a	11,963(2) Å
b	13,065(4) Å
с	11,046(1) Å
V	1726,2(6) Å ³
Ζ	4
Dimensions du cristal (mm ⁻³)	$0,06 \times 0,06 \times 0,05$
	$(\bar{R} = 0.035 \text{ mm})$
Coefficient linéaire d'absorption (mm ⁻¹)	29,1 ($\mu \overline{R} \simeq 1$)
Radiation utilisée	$MoK\alpha (\lambda = 0,71069 \text{ Å})$
Limite d'enregistrement	$\theta \leq 35^{\circ}$
Balayage	$\omega - 2\theta$
Amplitude du balayage	$(1.5 + 0.35 \text{ tg } \theta)^{\circ}$
Ouverture du compteur	$(2 + 0.5 \text{ tg } \theta) \text{ mm}$
Nombre de réflexions observées $l > 3\sigma(l)$	705
Nombre de variables	58
Valeur finale de R	0.045
Valeur finale de R	0,055
Ecart-type d'une observation de poids	•
unitaire (GOF)	1,065

la désinsertion en Ag s'est avérée totale. Les caractéristiques cristallographiques, ainsi que les conditions d'enregistrement des intensités diffractées par ce monocristal sont rassemblées dans le Tableau I.

Les réflexions observées ont été corrigées des facteurs de Lorentz-Polarisation et de l'absorption ($\mu R = 1,2$). La structure a été résolue par isotypie en prenant, initialement, les positions des atomes de molybdène et de sélénium identiques à celles observées pour Ag_{3,6}Mo₉Se₁₁. Leur affinement ainsi que celui des facteurs de température isotrope, puis anisotrope, convergent vers les facteurs de reliabilité finaux R= 0,045 et $R_{\omega} = 0,055$. La dernière carte de densité électronique ne fait plus alors apparaître de pics caractéristiques susceptibles d'être attribués à des atomes d'argent.

équivalents (Å ²) et anisotropes (× 10 ⁵) de O-Mo ₉ Se ₁₁							
Atomes		x	у		z	B_{eq}^{a}	
Mo (1)		0	8229 (2)	12	265 (2)	0,45 (3)	
Mo (2)		0	6461 (3)	25	500	0,46 (5)	
Mo (3)	189	93 (2)	8835 (2)	25	500	0,41 (3)	
Mo (4)	190)9 (1)	7072 (1)	12	280 (1)	0,46 (2)	
Se (1)		0	9917 (3)	25	500	0,60 (6)	
Se (2)		0	6514 (2)	1	163 (3)	0,73 (4)	
Se (3)	177	75 (2)	5410 (2)	25	500	0,86 (4)	
Se (4)	82	54 (2)	8837 (1)	1	187 (2)	0,65 (3)	
Se (5)	357	72 (2)	7660 (2)	23	500	0,91 (4)	
Atomes	$\boldsymbol{\beta}_{\mathfrak{l}\mathfrak{l}}{}^{b}$	β ₂₂	β 33	β_{12}	β ₁₃	β ₂₃	
Mo (1)	17 (9)	98 (9)	120 (10)	0	0	10 (30)	
Mo (2)	40 (20)	90 (20)	110 (20)	0	0	0	
Mo (3)	10 (10)	110 (10)	90 (10)	-50 (20)	0	0	
Mo (4)	33 (6)	107 (6)	96 (8)	20 (10)	20 (20)	-50 (20)	
Se (1)	90 (20)	70 (20)	160 (30)	0	0	0	
Se (2)	90 (10)	160 (10)	130 (20)	0	0	-40 (30)	
Se (3)	110 (20)	140 (10)	210 (20)	110 (20)	0	0	
Se (4)	61 (9)	130 (8)	140 (10)	-10 (20)	-100 (20)	50 (20)	
Se (5)	20 (10)	230 (10)	220 (20)	10 (30)	0	0	

TABLEAU II				
Coordonées atomiques (\times 10 ⁴) et facteurs de température isotropes				

 ${}^{a}B_{eq} = \frac{4}{3}\sum_{i,j}\beta_{ij}a_{i}a_{j}.$

^b Les facteurs de température anisotropes sont définis par exp $-(h^2\beta_{11} + k^2\beta_{22} + l^2\beta_{33} + hk\beta_{12} + hl\beta_{13} + kl\beta_{23})|$.

FIG. 5. Motif Mo_9Se_{11} de symétrie C_{2v} . Les six atomes de sélénium représentés en pointillés appartiennent aux motifs voisins.

Tous les calculs ont été réalisés avec la Bibliothèque S.D.P. implantée sur un miniordinateur PDP 11/60 (9).

Les coordonées atomiques, les facteurs d'agitation thermique anisotrope ainsi que leurs écarts-types sont rassemblés dans le Tableau II. La liste des F_0 , F_c peut être demandée aux auteurs.

Description structurale

Nous retrouvons évidemment le motif Mo₉Se₁₁ (Fig. 5) comme entité structurale de base dans le nouveau binaire O-Mo₉Se₁₁. Sa symétrie $C_{2\nu}$ est également identique à celle observée dans le ternaire Ag_{3,6}Mo₉Se₁₁. Les Figs. 6, 7, et 8 projections sur les plans (010), (001), et (100) représentent l'arrangement des motifs dans la structure. Dans le composé ternaire, les atomes d'argent se répartissent autour des motifs Mo₉Se₁₁ dans quatre sites cristallo-

FIG. 6. Projection de la structure de O-Mo₂Se₁₁ sur le plan (a, c). Les flèches représentent les liaisons Mo-Se intermotifs et les lignes en pointillés les distances Mo-Mo intercluster.

FIG. 7. Projection de la structure de O-Mo₉Se₁₁ sur le plan (a, b).

graphiques dont les taux d'occupation s'échelonnent entre 14 et 80%.

L'originalité de ce type structural réside dans une plus faible cohésion intermotif suivant une direction. En effet, dans le plan (a, c) (Fig. 6), chaque motif Mo₉Se₁₁ échange huit liaisons Mo-Se avec ses quatre voisins. Cette disposition, analogue à celle observée dans les phases MMo₆X₈, conduit également ici à quatre courtes distances Mo-Mo intercluster. Par contre, suivant la direction b (Fig. 7), chaque motif ne se lie à chacun de ses quatre voisins que par

FIG. 8. Projection de la structure de $O-Mo_9Se_{11}$ sur le plan (b, c).

une seule liaison Mo-Se. Cette répartition des motifs Mo_9Se_{11} en couches perpendiculaires à l'axe b, séparées par des canaux linéaires de section losangique, et parallèles à l'axe a (Fig. 8), confère à ce type structural un caractère bidimensionnel.

Dans le Tableau III, nous avons rassemblé les distances interatomiques caractéristiques du binaire ainsi que, pour comparaison, celles du ternaire.

TABLEAU III

PRINCIPALES DISTANCES INTERATOMIQUES (Å) DANS $Ag_{3,6}Mo_9Se_{11} \in T O-Mo_9Se_{11}^a$

	Ag _{3,6} Mo ₉ Se ₁₁	O~M09Se11
Distances Mo-Mo		
Intratriangles		
Mo(1)-Mo(1)	2,748 (2)	2,729 (5)
Mo(1)-Mo(2)	2,748 (2)	2,683 (4)
Mo(3)-Mo(4)	2,633 (1)	2,669 (3)
Mo(4)-Mo(4)	2,664 (2)	2,696(3)
Intertriangles		
Mo(1)-Mo(3)	2 × 2,732 (1)	$2 \times 2,760$ (2)
Mo(1)-Mo(4)	2 × 2,690 (1)	$2 \times 2,739$ (2)
Mo(2)-Mo(4)	4 × 2,730 (1)	$4 \times 2,769$ (2)
Interclusters		
Mo(4)-Mo(4)	3,728(2)	3,352 (3)
Distance entre triangles de Mo		
$\Delta - \Delta$	2,227 (3)	2,274
Distances Mo-Se		
Mo(1)-Se(1)	2,597 (2)	2,593 (5)
Mo(1)-Se(2)	2,575 (2)	2,551 (4)
Mo(1)-Se(4)	2 × 2,642 (1)	2 × 2,532 (2)
Mo(2)-Se(2)	2 × 2,608 (1)	$2 \times 2,583$ (3)
Mo(2)-Se(3)	2 × 2,644 (2)	$2 \times 2,528$ (3)
Mo(3)-Se(1)	2,666 (1)	2,670 (3)
Mo(3)-Se(3)interm.	2,736 (1)	2,603 (4)
Mo(3)-Se(4)	2 × 2,570 (2)	2 × 2,561 (2)
Mo(3)-Se(5)	2,554 (2)	2,527 (4)
Mo(4)-Se(2)	2,666 (1)	2,696 (2)
Mo(4)-Se(3)	2,587 (1)	2,561 (3)
Mo(4)-Se(4)	2,623 (2)	2,610 (3)
Mo(4)-Se(5)	2,555 (1)	2,523 (3)
Mo(4)-Se(4)interm.	2,690 (1)	2,573 (2)
Distances Se-Se (<4 Å)		
Se(5)-Se(5) _{interm.}	3,362 (3)	3,416 (5)
Se(4)-Se(4) _{interm.}	3,485 (2)	3,067 (4)
Se(3)-Se(5)	3,566 (2)	3,643 (4)
Se(5)-Se(4)interm.	3,652 (1)	3,575 (3)
Se(1)-Se(4)interm.	3,675 (1)	3,589 (3)
Se(3)-Se(4) _{interm.}	3,735 (1)	3,593 (3)
Se(2)-Se(3)	3,756 (1)	3,640 (3)

^{*a*} Les distances intratriangles correspondent aux distances entre atomes de molybdène appartenant au même triangle, perpendiculaire à l'axe d'allongement du cluster (direction 100). Les distances intertriangles correspondent aux distances entre atomes de molybdène appartenant à deux triangles voisins. Δ - Δ : distance intertriangle.

La désinsertion de l'argent provoque dans le binaire un rapprochement général des motifs Mo_9Se_{11} qui se traduit par une diminution importante des distances Mo-Se intermotifs aussi bien dans les couches (Mo(4)-Se(4)) qu'entre les couches (Mo(3)-Se(3)), ainsi que de la distance Se(4)-Se(4), déterminant la taille des canaux séparant les couches.

Il faut noter également une forte diminution de la distance intercluster Mo(4)-Mo(4) qui passe de 3,728 Å dans le ternaire à 3,352 Å dans le binaire, paramètre important pour les propriétés électroniques des composés à clusters.

Les distances Mo-Mo intracluster suivent la loi générale observée pour les clusters Mo₉ (2, 4): la diminution du nombre d'électrons d disponibles pour peupler les niveaux liants ($35,6e^-$ pour le ternaire et $32e^-$ pour le binaire par Mo₉) provoque un allongement du cluster suivant son axe. La distance interplan (Δ - Δ) passe ainsi de 2,227 Å dans le ternaire à 2,274 Å dans le binaire.

Propriétés physiques

Des mesures de résistivité sur monocristal ont été effectuées de 300 à 4,2 K sur des monocristaux de $O-Mo_9Se_{11}$ se présentant sous la forme de plaquettes. Les quatre contacts, pris sur les bords de la plaquette, ont été réalisés par soudure d'indium aux ultrasons.

La résistance de O-Mo₉Se₁₁ croit faiblement de la température ambiante (ρ (293) = 2 × 10⁻² $\Omega \cdot$ cm) jusqu'à 9 K. En-dessous de 9 K, elle commence par décroître légèrement, puis brutalement aux environs de 5,5 K pour atteindre à 5 K une valeur inférieure à 10⁻⁸ Ω , limite de détection de notre appareillage.

Cette transition supraconductrice a été confirmée sur une pastille de poudre compactée par la mesure de la susceptibilité magnétique réalisée à l'aide d'un pont d'inductance mutuelle. Le début de la transition est à 5,5 K et son milieu se situe à 4,5 K.

Sur la Fig. 9, nous avons porté les variations des résistances normalisées à la température ambiante du ternaire $Ag_{3,6}Mo_9Se_{11}$ et du binaire O-Mo₉Se₁₁. Pour $Ag_{3,6}Mo_9$ Se₁₁, une faible décroissance de la résistivité est observée de la température ambiante jusqu'à 134 K. En-dessous de cette température, elle remonte rapidement pour atteindre, à 4,5 K, une valeur quatre fois supérieure à celle mesurée à la température ambiante.

La différence de comportement électrique entre ces deux phases peut être reliée d'abord à la forte diminution de la distance Mo-Mo intercluster dans le binaire, qui provoque un meilleur recouvrement des orbitales d du Mo entre les clusters. Elle peut également être interprétée à partir de la structure électronique moléculaire du motif $Mo_{\bullet}X_{11}^{+-}$ déterminée par méthode EHT (10). Les calculs montrent en effet qu'il existe un gap à 36 électrons par Mo₉ correspondant à l'occupation de tous les niveaux liants (Fig. 10). Dans le ternaire Ag_{3.6}Mo₉Se₁₁, dans une hypothèse

FIG. 9. Variation thermique de la résistance normalisée à 293 K de $O-Mo_9Se_{11}$ (o) et de $Ag_{3,6}Mo_9Se_{11}$ (+). L'encart montre la transition supraconductrice de $O-Mo_9Se_{11}$.

FIG. 10. Diagrammes des orbitales moléculaires du motif $Mo_2 X_{11}^4$ seul (a) et avec ses six ligandes externes (b) d'après Hughbanks et Hoffmann (10).

purement ionique (Ag^+, Se^{2-}) , il reste 35,6 électrons par cluster Mo₉ et le niveau de Fermi se trouve près du gap, expliquant ainsi la remontée à basse température. En revanche, dans le binaire Mo₉Se₁₁, nous décomptons $32e^-$ par cluster Mo₉ et les niveaux e' et e", qui participent d'une manière prépondérante à la formation de la bande de conduction dans le solide, ne sont plus qu'à moitié occupés, ce qui devrait conduire à un comportement de la résistivité de type métallique.

La faible pente négative de la résistivité en fonction de la température ainsi que la valeur élevée de la résistivité à l'ambiante de $O-Mo_9Se_{11}$ peuvent s'expliquer par les nombreuses fissures observées sur le cristal, résultant du traitement chimique subi. Toutefois, la transition supraconductrice confirme que le caractère du binaire est intrinsèquement métallique.

Conclusion

Nous avons montré au cours de ce travail qu'il est possible de désinsérer l'argent du ternaire Ag_{3.6}Mo₉Se₁₁ par voie chimique et électrochimique, et d'obtenir ainsi le nouveau binaire métastable O-Mo₉Se₁₁. Les propriétés de transport montrent un passage d'un état semi-métallique pour Ag_{3.6}Mo₉Se₁₁ à l'état supraconducteur pour O-Mo₉Se₁₁. Cette évolution est cohérente avec le diagramme d'orbitales moléculaires proposé par Hughbanks et al. Des réactions de réinsertion par voie électrochimique actuellement en cours montrent que le binaire O-Mo₉Se₁₁ manifeste des propriétés de structure d'accueil pour différents cations $(Li^+, Cu^{2+}, Ni^{2+}, Cd^{2+})$ (11).

Bibliographie

- R. CHEVREL ET M. SERGENT, "Crystal Chemistry and Properties of Materials with Quasi-One-Dimensional Structures" (J. Rouxel, Ed.), pp. 315-373, (1986).
- 2. M. POTEL, thèse d'Etat, Rennes (1981).
- 3. P. GOUGEON, thèse 3ème cycle, Rennes (1984).
- 4. M. POTEL, P. GOUGEON, R. CHEVREL, ET M. SERGENT, *Rev. Chim. Min.* 21, 509 (1984).
- 5. P. GOUGEON, M. POTEL, J. PADIOU, ET M. SERGENT, C.R. Acad. Sci. (Paris) II 296, 351 (1983).
- P. GOUGEON, J. PADIOU, J. Y. LE MAROUILLE, M. POTEL, ET M. SERGENT, J. Solid State Chem. 51, 218 (1984).
- 7. C. BOULANGER ET J. M. LECUIRE, à paraître.
- 8. C. BOULANGER, J. M. LECUIRE, P. GOUGEON, M. POTEL, ET M. SERGENT, C.R. Acad. Sci. (Paris) II 303, 37 (1986).
- B. A. FRENZ, Enraf Nonius CAD-4, SDP in "Computing in Crystallography" (M. Schenk and R. Olthof-Hazekamp, Eds.), Delft Univ. Press, Delft.
- T. HUGHBANKS, R. HOFFMANN, J. Amer. Chem. Soc. 105, 1150 (1983).
- 11. C. BOULANGER ET J. M. LECUIRE, à paraître.